SET	A

INDIAN SCHOOL MUSCAT HALF YEARLY EXAMINATION 2023 APPLIED MATHEMATICS

SUB.CODE: 241

CLASS: XI Max.Marks: 80

Date: 12.09.'23

	MARKING SCHEME		
QN.NO	VALUE POINTS SECTION- A	MARKS SPLIT UP	
1	(b) 23	1 mark each Q1 to Q20.	
2	(b) 30		
3	(a) 50		
4	(b) $\frac{2}{5}$		
5	(a) 6		
6	(c) 24		
7	(c) 1.7781		
8	$(d) \frac{-3}{5}$		
9	(b) 100		
10	(b) n(B)		
11	(c) 108		
12	(c) mother		
13	(d) Fencing		
14	$(d) \frac{-3}{7}$		

15	(a) 190	
16	(c) 67	
17	(d) 90	
18	(c) 33	
19	(b) Both A and R are true but R is not the correct explanation of A	
20	(d) A is false but R is true	
21	Section-B ERPW	For each letter ½
22	Conclusion I is true and Conclusion II is false	1m each
23	Let $\frac{a}{r}$, a, ar be three terms of G.P. $\Rightarrow a^{3} = 512 \Rightarrow a = 8$ $\Rightarrow \frac{8}{r} + 4,12, 8r \text{ (AP)}$ $24 = (8r + \frac{8}{r} + 4)$ $\Rightarrow 6 = 2r + \frac{2}{r} + 1$ $2r^{2} - 5r + 2 = 0$ $r = 2, r = \frac{1}{2}$ so the terms are (16, 8, 4) or (4, 8, 16) Let the first term of the G.P. be a and its common ratio be r. Now, $4^{th} \text{ term} = t_{4} = 54 \Rightarrow ar^{3} = 54$ $9^{th} \text{ term} = t_{9} = 13122 \Rightarrow ar^{8} = 13122$ $\frac{ar^{8}}{ar^{3}} = \frac{13122}{54}$ $\Rightarrow r^{5} = 243$ $\Rightarrow r = 3$ $ar^{3} = 54$ $\Rightarrow a \times (3)^{3} = 54$ $\Rightarrow a \times (3)^{3$	Getting a ½ mark Finding r 1 mark Getting final ans 1 mark

24	The word 'OBEDIENCE' has 5 vowels - three E's, one O and one I; it has four different consonants — B, D, N, C.	½ m
	Considering 5 vowels as a block and 4 consonants as another block. The two block can be arranged in $\lfloor 2 \rfloor$ ways.	½ m
	Now, within the block of vowels, 5 vowels can be arranged in $\frac{15}{2}$ ways. Also, within the	½ m
	block of consonants, 4 different consonants can be arranged in 14 ways.	½ m
	By the multiplication principle of counting, the required number of words formed	
	$= \underline{12} \times \underline{15} \times \underline{14} = 2 \times 5 \times 4 \times 24 = 960.$	
	(OR)	
	3 balls can be selected from 6 red balls in ${}^6\mathrm{C}_3$ ways.	
	3 balls can be selected from 5 white balls in 5C_3 ways.	
	3 balls can be selected from 5 blue balls in ⁵ C ₃ ways. Thus, by multiplication principle,	
	required number of ways of selecting 9 balls	Each
	${}^{6}C_{3} \times {}^{5}C_{3} \times {}^{5}C_{3} = \frac{6!}{3!3!} \times \frac{5!}{3!2!} \times \frac{5!}{3!2!}$	Step ½ m
	$= \frac{6 \times 5 \times 4 \times 3!}{3! \times 3 \times 2 \times 1} \times \frac{5 \times 4 \times 3!}{3! \times 2 \times 1} \times \frac{5 \times 4 \times 3!}{3! \times 2 \times 1}$	
	$= 20 \times 10 \times 10$	
	= 2000	
25	$A = \left 30 \times 8 - \frac{11}{2} m \right $	½ m
	$240 - 90 = \frac{11}{2}m$	¹∕2 m
	$m = \frac{300}{11} = 27 \text{ min } 16 \text{ sec}$	½ m
	Therefore the required time is 8:27:16	½ m
	Section-C	
26	Slope of line joining the points (2, 3) and (3, -1) is -4	1m each
20	Slope of the required line is -1/4 Equation of the line passing through the point (5, 2) with slope -1/4 is	
	X - 4y + 3 = 0	
	(OR)	1m+1m
	Getting (i) slope- intercept form (ii) intercept form and also find its slope and y-intercept	½ m
		+½ m
27	No. of odd days upto 2000 years = 0 From 2001 to 2023, no. of odd days = 0	½ m ½ m
	1^{st} Jan 2024 to 15^{th} August $2024 = 4$ odd days	1m
	Total no. of odd days = 4	½ m

	Therefore, 15 th August 2024 is Thursday.	½ m
28	Let the first term of the A.P. be a and the common difference be d.	
	a = a, b = a + d and c = a + 2d	
	$a + b + c = 18 \Rightarrow a + (a + d) + (a + 2d) = 18$	
	⇒ 3a + 3d = 18	
	⇒ a + d = 6(i)	
	Now, according to the question, a + 4, a + d + 4 and a + 2d + 36 are in G.P.	
	$\therefore (a + d + 4)^2 = (a + 4)(a + 2d + 36)$	
	$\Rightarrow (6 - d + d + 4)^2 = (6 - d + 4)(6 - d + 2d + 36)$	
	$\Rightarrow (6 - d + d + 4)^2 = (6 - d + 4)(6 - d + 2d + 36)$	
	$\Rightarrow (10)^2 = (10 - d)(42 + d)$	
	\Rightarrow 100 = 420 + 10d - 42d - d ²	
	\Rightarrow d ² + 32d - 320 = 0	
	\Rightarrow (d + 40)(d - 8) = 0 \Rightarrow d = 8, -40	
	Now, putting d = 8, -40 in equation (i), we get, a = -2, 46, respectively.	
	For a = - 2, and d = 8, we have:	
	a = -2, b = 6, c = 14	
	And, for a = 46 and d = - 40, we have;	
	a = 46, b = 6, c = -34	
29	$\frac{1}{3} \div \frac{8}{9} \times \frac{4}{5} + (8)^{\frac{2}{3}} - 3^2$	Each
	After simplication, getting the ans4.7	step
30	$\frac{8 \log 2 - 2 \log 4}{\log 2}$ Using laws of logarithm, simplified and getting the ans 4	1m Each
		step
	(OR) Getting $x = 2$, $y = 3$ and $z = 5$	1m
	Substitution and getting final ans 38	Each step
		½ m
21	Particular (2.1) (4.2) (6.2) (9.4) (10.5))	1 ½ m
31	Roster form = $\{(2,1), (4,2), (6,3) (8,4), (10,5)\}$ Domain = $\{2,4,6,8,10\}$	
	Range = $\{1,2,3,4.5\}$	
22	Section-D	Ear Cas
32	Possible Venn Diagram	For figs.
	Conclusions	Conclusi
22	Hawifeing the On Is AD against 1, 500	on 2m $\frac{1}{2} + 1 \frac{1}{2}$
33	Identifying the Qn. Is AP, getting $d = 500$ A = 20000	$\frac{72 + 1}{1m}$
	25 th term is 32,000	1m
	His monthly pension is Rs. 16,000	1m
	(OR) Identifying the qn. Is GP, getting first term	1m

	Common ratio	1 m
	Applying S _n formula and getting 87380	2m
	Cost = Rs. 174760	1m
34	$(5.364)^3 \times (49.76)^{\frac{1}{2}}$	½ m
	Let $x = \frac{(5.364)^3 \times (49.76)^{\frac{1}{2}}}{(83.45)^{\frac{1}{3}}}$	
	Applying log on both sides and using laws of logarithms	
	Getting the ans $\log x = 2.3965$	3m
	Taking antilog on both sides	
	And getting the final ans $x = 249.2$	1 ½ m
	(OR)	
		Each
	P = 10,000 r = 4% per half year n=20 half years Getting $A = 10,000(1.04)^{20}$	step
		1m
	Taking log on both sides, we get $\log A = 4.34$	
	Taking antilog on bothsides we get A = 21880 C.I. = Rs 11880	
35	Drawing Venn diagram and for working	2m
33		1m
	Getting ans (a) 160 (b) 40	1m
	(c) 50	½ m
26	(d) 30	each
36	(i) 120 ways	1m
	(ii) 48	1m
	(iii) 12 (OD) (iii) 24	2m
25	(OR) (iii) 24	2m
37	(i) Rupesh	1m
	(ii) Rishi	1m
	(iii) Sachin and Ashwini	2m
20	(OR) (iii) Sachin and Rupesh	2m
38	(i) (5,3)	lm
	(ii) $5x - 3y + 23 = 0$	1m
	(iii) $5x - 3y - 16 = 0$	2m
l	(OR) (iii) $3x + 5y - 30 = 0$	2m