SET	A

INDIAN SCHOOL MUSCAT
 HALF YEARLY EXAMINATION 2023 APPLIED MATHEMATICS
 SUB.CODE: 241

CLASS: XI
Max.Marks: 80
Date: 12.09.'23

MARKING SCHEME			
QN.NO	SECTION- A	VALUE POINTS	MARKS SPLIT UP
1	(b) 23		1 mark each Q1 to Q20.
2	(b) 30		
3	(a) 50		
4	(b) $\frac{2}{5}$		
5	(a) 6		
6	(c) 24		
7	(c) 1.7781		
8	(d) $\frac{-3}{5}$		
9	(b) 100		
10	(b) $\mathrm{n}(\mathrm{B})$		
11	(c) 108		
12	(c) mother		
13	(d) Fencing		
14	(d) $\frac{-3}{7}$		

15	(a) 190		
16	(c) 67		
17	(d) 90		
18	(c) 33		
19	(b) Both A and R are true but R is not	the correct explanation of A	
20	(d) A is false but R is true		
21	Section-B ERPW		For each letter $1 / 2$ m
22	Conclusion I is true and Conclusion	is false	1 m each
23	Let $\frac{a}{r}, a$, ar be three terms of G.P $\begin{array}{ll} \Rightarrow & a^{3}=512 \Rightarrow a=8 \\ \Rightarrow & \frac{8}{r}+4,12,8 r(A P) \\ & 24=\left(8 r+\frac{8}{r}+4\right) \\ \Rightarrow & 6=2 r+\frac{2}{r}+1 \\ & 2 r^{2}-5 r+2=0 \\ & r=2, r=\frac{1}{2} \end{array}$ so the terms are $(16,8,4)$ or $(4,8$,	Let the first term of the G.P. be a and its common ratio be r. Now, $\begin{aligned} & 4^{\text {th }} \text { term }=t_{4}=54 \Rightarrow a r^{3}=54 \\ & 9^{\text {th }} \text { term }=t_{9}=13122 \Rightarrow a r^{8}=13122 \\ & \frac{a r^{8}}{a r^{3}}=\frac{13122}{54} \\ & \Rightarrow r^{5}=243 \\ & \Rightarrow r=3 \\ & a r^{3}=54 \\ & \Rightarrow a \times(3)^{3}=54 \\ & \Rightarrow a=\frac{54}{27}=2 \end{aligned}$ $\begin{aligned} \text { Required G.P. } & =a, a r, \mathrm{ar}^{2}, a r^{3}, \ldots \ldots \\ & =2,2 \times 3,2 \times(3)^{2}, 54 \\ & =2,6,18,54 \end{aligned}$ 6)	Getting a $1 / 2$ mark Finding r 1 mark Getting final ans 1 mark

24	The word 'OBEDIENCE' has 5 vowels - three E's, one O and one I ; it has four different consonants- B, D, N, C. Considering 5 vowels as a block and 4 consonants as another block. The two block can be arranged in $\underline{2}$ ways. Now, within the block of vowels, 5 vowels can be arranged in $\frac{\sqrt{3}}{3}$ ways. Also, within the block of consonants, 4 different consonants can be arranged in $\lfloor 4$ ways. By the multiplication principle of counting, the required number of words formed $=\underline{2} \times \frac{\left[\frac{5}{3}\right.}{[3} \times \underline{4}=2 \times 5 \times 4 \times 24=960 .$ (OR) 3 balls can be selected from 6 red balls in ${ }^{6} \mathrm{C}_{3}$ ways. 3 balls can be selected from 5 white balls in ${ }^{5} \mathrm{C}_{3}$ ways. 3 balls can be selected from 5 blue balls in ${ }^{5} \mathrm{C}_{3}$ ways. Thus, bv multiplication principle. required number of ways of selecting 9 balls $\begin{aligned} & { }^{6} \mathrm{C}_{3} \times{ }^{5} \mathrm{C}_{3} \times{ }^{5} \mathrm{C}_{3}=\frac{6!}{3!3!} \times \frac{5!}{3!2!} \times \frac{5!}{3!2!} \\ & =\frac{6 \times 5 \times 4 \times 3!}{3!\times 3 \times 2 \times 1} \times \frac{5 \times 4 \times 3!}{3!\times 2 \times 1} \times \frac{5 \times 4 \times 3!}{3!\times 2 \times 1} \\ & =20 \times 10 \times 10 \\ & =2000 \end{aligned}$	
25	$\begin{aligned} & \mathrm{A}=\left\|30 \times 8-\frac{11}{2} \mathrm{~m}\right\| \\ & 240-90=\frac{11}{2} \mathrm{~m} \\ & \mathrm{~m}=\frac{300}{11}=27 \mathrm{~min} 16 \mathrm{sec} \end{aligned}$ Therefore the required time is $8: 27: 16$	$\begin{aligned} & 1 / 2 \mathrm{~m} \\ & 1 / 2 \mathrm{~m} \\ & \\ & 1 / 2 \mathrm{~m} \\ & 1 / 2 \mathrm{~m} \end{aligned}$
26	Section-C Slope of line joining the points $(2,3)$ and $(3,-1)$ is -4 Slope of the required line is $-1 / 4$ Equation of the line passing through the point $(5,2)$ with slope $-1 / 4$ is $x-4 y+3=0$ (OR) Getting (i) slope- intercept form (ii) intercept form and also find its slope and yintercept	1 m each $\begin{aligned} & 1 \mathrm{~m}+1 \mathrm{~m} \\ & 1 / 2 \mathrm{~m} \\ & +1 / 2 \mathrm{~m} \end{aligned}$
27	No. of odd days upto 2000 years $=0$ From 2001 to 2023, no. of odd days $=0$ $1^{\text {st }}$ Jan 2024 to $15^{\text {th }}$ August $2024=4$ odd days Total no. of odd days $=4$	$\begin{aligned} & 1 / 2 \mathrm{~m} \\ & 1 / 2 \mathrm{~m} \\ & 1 \mathrm{~m} \\ & 1 / 2 \mathrm{~m} \end{aligned}$

	Therefore, $15^{\text {th }}$ August 2024 is Thursday.	$1 / 2 \mathrm{~m}$
28	Let the first term of the A.P. be a and the common difference be d. $\begin{align*} & \therefore a=a, b=a+d \text { and } c=a+2 d \\ & \begin{aligned} a+b+c=18 & \Rightarrow a+(a+d)+(a+2 d)=18 \\ & \Rightarrow 3 a+3 d=18 \\ & \Rightarrow a+d=6 \ldots \ldots . .(i) \end{aligned} \end{align*}$ Now, according to the question, $a+4, a+d+4$ and $a+2 d+36$ are in G.P. $\begin{aligned} & \therefore(a+d+4)^{2}=(a+4)(a+2 d+36) \\ & \Rightarrow(6-d+d+4)^{2}=(6-d+4)(6-d+2 d+36) \\ & \Rightarrow(6-d+d+4)^{2}=(6-d+4)(6-d+2 d+36) \\ & \Rightarrow(10)^{2}=(10-d)(42+d) \\ & \Rightarrow 100=420+10 d-42 d-d^{2} \\ & \Rightarrow d^{2}+32 d-320=0 \\ & \Rightarrow(d+40)(d-8)=0 \Rightarrow d=8,-40 \end{aligned}$ Now, putting $d=8,-40$ in equation (i), we get, $a=-2,46$, respectively. For $\mathrm{a}=-2$, and $\mathrm{d}=8$, we have: $a=-2, b=6, c=14$ And, for $\mathrm{a}=46$ and $\mathrm{d}=-40$, we have; $a=46, b=6, c=-34$	
29	$\frac{1}{3} \div \frac{8}{9} \times \frac{4}{5}+(8)^{\frac{2}{3}}-3^{2}$ After simplication, getting the ans. -4.7	Each step 1m
30	$\frac{8 \log 2-2 \log 4}{\log 2}$ Using laws of logarithm, simplified and getting the ans 4 (OR) Getting $\mathrm{x}=2, \mathrm{y}=3$ and $\mathrm{z}=5$ Substitution and getting final ans 38	Each step 1m Each step $1 / 2 \mathrm{~m}$ $11 / 2 \mathrm{~m}$
31	$\begin{aligned} & \text { Roster form }=\{(2,1),(4,2),(6,3)(8,4),(10,5)\} \\ & \text { Domain }=\{2,4,6,8,10\} \\ & \text { Range }=\{1,2,3,4.5\} \end{aligned}$	
32	Section-D Possible Venn Diagram Conclusions	For figs. 3m Conclusi on 2 m
33	Identifying the Qn . Is AP, getting $\mathrm{d}=500$ $\mathrm{A}=20000$ $25^{\text {th }}$ term is 32,000 His monthly pension is Rs. 16,000 (OR) Identifying the qn. Is GP, getting first term	$\begin{aligned} & 1 / 2+1^{1 / 2} \\ & 1 \mathrm{~m} \\ & 1 \mathrm{~m} \\ & 1 \mathrm{~m} \\ & \\ & 1 \mathrm{~m} \end{aligned}$

	Common ratio Applying S_{n} formula and getting 87380 Cost $=$ Rs. 174760	$\begin{aligned} & 1 \mathrm{~m} \\ & 2 \mathrm{~m} \\ & 1 \mathrm{~m} \end{aligned}$
34	Let $\mathrm{x}=\frac{(5.364)^{3} \times(49.76)^{\frac{1}{2}}}{(83.45)^{\frac{1}{3}}}$ Applying log on both sides and using laws of logarithms Getting the ans $\log \mathrm{x}=2.3965$ Taking antilog on both sides And getting the final ans $\mathrm{x}=249.2$ (OR) $\mathrm{P}=10,000 \mathrm{r}=4 \%$ per half year $\mathrm{n}=20$ half years Getting $\mathrm{A}=10,000(1.04)^{20}$ Taking \log on both sides, we get $\log \mathrm{A}=4.34$ Taking antilog on bothsides we get $\mathrm{A}=21880$ C.I. $=$ Rs 11880	$\begin{aligned} & 1 / 2 \mathrm{~m} \\ & 3 \mathrm{~m} \\ & 11 / 2 \mathrm{~m} \\ & \text { Each } \\ & \text { step } \\ & 1 \mathrm{~m} \end{aligned}$
35	Drawing Venn diagram and for working Getting ans (a) 160 (b) 40 (c) 50 (d) 30	$\begin{aligned} & 2 \mathrm{~m} \\ & 1 \mathrm{~m} \\ & 1 \mathrm{~m} \\ & 1 / 2 \mathrm{~m} \\ & \text { each } \\ & \hline \end{aligned}$
36	(i) 120 ways (ii) 48 (iii) 12 (OR) (iii) 24	$\begin{aligned} & 1 \mathrm{~m} \\ & 1 \mathrm{~m} \\ & 2 \mathrm{~m} \\ & 2 \mathrm{~m} \\ & \hline \end{aligned}$
37	(i) Rupesh (ii) Rishi (iii) Sachin and Ashwini (OR) (iii) Sachin and Rupesh	$\begin{aligned} & 1 \mathrm{~m} \\ & 1 \mathrm{~m} \\ & 2 \mathrm{~m} \\ & 2 \mathrm{~m} \\ & \hline \end{aligned}$
38	(i) $(5,3)$ (ii) $5 x-3 y+23=0$ (iii) $5 x-3 y-16=0$ (OR) (iii) $3 x+5 y-30=0$	$\begin{aligned} & 1 \mathrm{~m} \\ & 1 \mathrm{~m} \\ & 2 \mathrm{~m} \\ & 2 \mathrm{~m} \\ & \hline \end{aligned}$

